Problem 21.7 Calculation of the potential V(R)
This exercise steps through the calculation of equation (21.68) in Zwiebach. It is based on the paper Physics of String Flux Compactifications, Denef et al, 2007
(a) The Einstein-Hilbert action in 6 dimensions is \begin{equation*} S = \int\!\! d^6 x\ M_6^4 \sqrt{-G}\ \mathcal{R} \end{equation*}
with \mathcal{R} the Ricci scalar of the 6-dimensional metric. Suppose the 6-dimensional metric is of the form
\begin{equation}\label{eq:20170225b}
G_{MN}dx^M dx^N = g_{\mu\nu}dx^{\mu} dx^{\nu} + R^2(x) g_{ab} dx^a dx^b
\end{equation}
with M,N: 0,\ldots, 5 and \mu,\nu: 0,\ldots, 3 and a,b: 4,5. Mathematicians call a metric of this form a warped product. A physical interpretation is a compactified space where the compactification radius R(x) depends on the 4-dimensional spacetime. Calculate that the 6-dimensional Ricci scalar of the metric \eqref{eq:20170225b} has the form
\begin{equation*}
\mathcal{R} =\mathcal{R}_4- 4 \frac{\Delta R}{R} - \frac{2}{R^2} g^{\mu\nu} \partial_{\mu}R\ \partial_{\nu} R + \frac{1}{R^2} \mathcal{R}_2
\end{equation*}
with \mathcal{R}_4 the Ricci-scalar of the 4-dimensional metric g_{\mu\nu}, \mathcal{R}_2 the Ricci-scalar of the 2-dimensional metric g_{ab} and \Delta the Laplacian with respect to the metric g_{\mu\nu}.
(b) If the volume of the compactified space is \begin{equation*} \int\!\! d^2 y\ \sqrt{g_{(2)}} = V_2 \end{equation*}
use the Gauss-Bonnet theorem
\begin{equation*}
\int\!\! d^2 y\ \sqrt{g_{(2)}}\ \mathcal{R}_2 = 4 \pi ( 2 - 2 g)
\end{equation*}
to show that
\begin{equation}\label{eq:20170225f}
S = \int\!\! d^4 x\ M_6^4 V_2 \sqrt{-g_{(4)}} \ \left(R^2 \mathcal{R}_4 - 4 R \Delta R
- 2 g^{\mu\nu}\partial_{\mu}R\ \partial_{\nu} R\right) + \int\!\! d^4 x\ M_6^4 \sqrt{-g_{(4)}} 4 \pi ( 2 - 2 g)
\end{equation}
I have used the abbreviation \det(-g_{\mu\nu}) = g_{(4)} and \det(g_{ab}) = g_{(2)}
(c) In the action \eqref{eq:20170225f}, the graviton and scalar field are mixed because of the term R^2 \mathcal{R}_4, we will separate them by writing g_{\mu\nu} = R^{-2} h_{\mu\nu}. Calculate that under this Weyl transformation the action becomes \begin{equation}\label{eq:20170225g} S = \int\!\! d^4 x\ M_6^4 V_2 \sqrt{-h} \ \left(\mathcal{R}_h +2 \frac{\Delta R}{R} - \frac{6}{R^2} h^{\mu\nu}\partial_{\mu}R\ \partial_{\nu} R - V(R) \right) \end{equation}
with
\begin{equation}\label{eq:20170225h}
V(R) = - ( 2 - 2 g ) \frac{4 \pi}{V_2 R^4}
\end{equation}
In equations \eqref{eq:20170225g}and \eqref{eq:20170225h}, the Laplacian and the Ricci scalar \mathcal{R}_h are with respect to the metric h_{\mu\nu}. This concludes the calculation of equation (21.68) in Zwiebach. We have also calculated that a_g = \dfrac{4 \pi}{V_2}.
References and comments
[1] Physics of String Flux Compactifications,
Denef et al, 2007
No comments:
Post a Comment