If X and Y are Gaussian random variables with \mathrm{Cov}(X,Y) = c, then \begin{equation}\label{eq:20171005} \mathbb{E}\big[e^X f(Y)\big] = \mathbb{E}\big[e^X \big] \mathbb{E}\big[ f(Y + c)\big] \end{equation}
My proof goes as follows. It is sufficient to prove formula \eqref{eq:20171005} for functions of the form f(x) = e^{i k x} because "all" functions can be expanded in e^{i k x} by Fourier transformation. Then, the left hand side of \eqref{eq:20171005} is \begin{equation*} \mathbb{E}\big[e^{X + i k Y}\big] = \exp \left[ \mathbb{E} [ X + i k Y] + \frac{1}{2} \mathrm{Var}[ X + i k Y] \right] = \exp \left[ \mathbb{E} [ X] + i k\ \mathbb{E}[Y] + \frac{1}{2} \mathrm{Var}[ X ] + i k\ \mathrm{Cov}[X,Y] + \frac{1}{2} (ik)^2\ \mathrm{Var}[Y] \right] \end{equation*} The right hand side of \eqref{eq:20171005} is \begin{equation*}\mathbb{E}\big[e^{X} \big] \mathbb{E}\big[e^{i k (Y + c)}\big] = \exp \left[ \mathbb{E} [ X] + \frac{1}{2} \mathrm{Var}[ X ]\right] \exp\left[i k c + ik\ \mathbb{E}[Y] +\frac{1}{2} (ik)^2\ \mathrm{Var}[Y]\right] \end{equation*} which is clearly equal to the left hand side of \eqref{eq:20171005}.As an example of the use of \eqref{eq:20171005}, I calculate the price of an option to exchange one asset for another. I assume the reader is familiar with the Black-Scholes model. Suppose S_1(T) and S_2(T) are the prices of two risky assets at time T. The option gives the buyer the right, but not the obligation, to exchange the second asset for the first at the time of maturity T. In other words, the payoff is \max(0, S_1(T) - S_2(T)). I calculate \begin{equation*} \mathbb{E}\left[ \max( S_1 - S_2,0 )\right] =\mathbb{E}\left[ S_2 \max\left( \frac{S_1}{S_2} - 1,0 \right)\right] = \mathbb{E}\left[ S_2\right] \mathbb{E}\left[ \max\left( \frac{S_1}{S_2}e^c - 1,0 \right)\right] \end{equation*} with c = \mathrm{Cov}( \log S_2 , \log\frac{S_1}{S_2} ). The calculation is now reduced to one dimension only. The Black formula gives \begin{equation*} \mathbb{E}\left[ \max(A -1,0 )\right] = \mathbb{E}\left[A \right] N(d_{+}) - N(d_{-}) \end{equation*} with A = \dfrac{S_1}{S_2} e^c and \begin{equation*} d_{\pm} = \frac{\log \left( \mathbb{E}\left[A \right] \right)\pm \frac{1}{2} w}{ \sqrt{w}} \end{equation*} and w = \mathrm{Var} \left[ \log A \right]. Using \eqref{eq:20171005} again gives \begin{equation*} \mathbb{E}\left[ S_1 \right] = \mathbb{E}\left[ S_2 \right] \mathbb{E}\left[ \frac{S_1}{S_2} e^c\right] \end{equation*} thus \begin{equation*} \mathbb{E}\left[A\right] = \mathbb{E}\left[ \frac{S_1}{S_2} e^c\right] = \frac{\mathbb{E}\left[ S_1 \right]}{\mathbb{E}\left[ S_2 \right]} \end{equation*} The expectation value of the spot is the forward price, thus \mathbb{E}\left[ S_1 \right] = F_1 and \mathbb{E}\left[ S_2 \right] = F_2. The undiscounted price of the exchange option is therefore \begin{equation}\label{eq:20171006} F_1\ N(d_{+}) - F_2\ N(d_{-}) \end{equation} with \begin{equation*} d_{\pm} = \frac{\log \left( \dfrac{F_1}{F_2} \right)\pm \frac{1}{2} w}{ \sqrt{w}} \end{equation*} where \begin{equation*} w = \mathrm{Var}[ \log A ] = \mathrm{Var}\left[ \log S_1 - \log S_2\right] = (\sigma_1^2 - 2 \rho \sigma_1 \sigma_2 +\sigma_2^2 )T \end{equation*} Notice that I did not need to calculate c. Formula \eqref{eq:20171006} is known as Margrabe's formula.
No comments:
Post a Comment