Short overview of G_2
If \alpha_1 is the long simple root of G_2 and \alpha_2 is its short simple root, then all positive roots are \begin{equation*} \alpha_1, \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2 \alpha_2, \alpha_1 + 3 \alpha_2, 2 \alpha_1 + 3\alpha_2 \end{equation*} In the Chevalley basis, the commutators are \begin{align*} [h_{\alpha} , h_{\beta} ] &= 0 &\\ [h_{\alpha} , e_{\beta} ] &= 2 \frac{\alpha \cdot \beta}{\alpha^2} e_{\beta} &\\ [e_{\alpha} , e_{-\alpha} ] &= h_{\alpha}\\ [e_{\alpha} , e_{\beta} ] &= n_{\alpha \beta}e_{\alpha+\beta}\quad&&\text{if $\alpha + \beta \neq 0$ and $\alpha + \beta$ is a root}\\ [e_{\alpha} , e_{\beta} ] &= 0 \quad&&\text{if $\alpha + \beta \neq 0$ and $\alpha + \beta$ is not a root} \end{align*} In a previous post, I have calculated the integers n_{\alpha\beta}.
Overview of the irreps of G_2
I use capital letters H_{\alpha} and E_{\alpha} for the representations of h_{\alpha} and e_{\alpha}. These matrices act on vectors as \begin{align*} &H_{\alpha_1} | \mu_1 \mu_2 \rangle = \mu_1\\ &H_{\alpha_2} | \mu_1 \mu_2 \rangle = \mu_2\\ &E_{\alpha} |\mu\rangle = n_{\alpha,\mu} |\mu - \alpha \rangle \end{align*} \mu_1 and \mu_2 are called Dynkin labels, |\mu\rangle = |\mu_1 \mu_2 \rangle is called a weight vector. If the \alpha-string through |\mu\rangle goes from |\mu - q \alpha\rangle up to |\mu + p \alpha\rangle with p,q \ge 0 then [1] \begin{equation}\label{eq:20160919} |n_{\alpha,\mu}|^2 = p (q+1) \end{equation}
The 7-dimensional irrep of G_2
The highest weight for the \bf{7} is | 0, 1 \rangle. The list of all weights in \bf{7} is [2] \begin{align*} |\Lambda\rangle & = | 0, 1 \rangle\\ |\Lambda-\alpha_2\rangle & = | 1,-1 \rangle\\ |\Lambda-\alpha_1-\alpha_2\rangle & = | -1,2\rangle\\ |\Lambda-\alpha_1-2 \alpha_2\rangle & = | 0,0\rangle\\ |\Lambda-\alpha_1-3 \alpha_2\rangle & = | 1,-2\rangle\\ |\Lambda-2 \alpha_1-3 \alpha_2\rangle & = | -1,1\rangle\\ |\Lambda-2 \alpha_1-4 \alpha_2\rangle & = | 0, -1\rangle \end{align*} The weights can also be plotted on the root diagram.
![]() |
7-dimensional irrep of G_2 The blue dots are the weights. The black arrows are the root vectors of G_2. |
I calculate the matrix E_{-\alpha_1} by calculating E_{-\alpha_1}|\mu\rangle for all weights |\mu\rangle in the irrep \bf{7}. Because |\Lambda - \alpha_1\rangle is not a weight of \bf{7}, it follows that \begin{equation*} E_{-\alpha_1}|\Lambda\rangle = 0 \end{equation*} The calculation of E_{-\alpha_1}|\Lambda-\alpha_2\rangle proceeds as follows. Because the \alpha_1-string through |\Lambda-\alpha_2\rangle goes from |\Lambda-\alpha_2\rangle to |\Lambda-\alpha_2-\alpha_1\rangle, q=0 and p=1 in formula \eqref{eq:20160919}. Thus |n_{-\alpha_1,\Lambda - \alpha_2}|^2=1, I choose the phase of |\Lambda - \alpha_2 -\alpha_1 \rangle such that \begin{equation*} E_{-\alpha_1}|\Lambda-\alpha_2\rangle = |\Lambda-\alpha_2-\alpha_1\rangle \end{equation*} The calculation of E_{-\alpha_1}|\mu\rangle for the other weights is similar:
- either |\mu - \alpha_1\rangle is not a weight and then E_{-\alpha_1}|\mu\rangle=0
- or |n_{-\alpha_1,\mu}|^2 = 1 and then I can choose the phase such that E_{-\alpha_1}|\mu\rangle = |\mu - \alpha_1 \rangle
This proceeds as above. The most interesting case is E_{-\alpha_2}|\Lambda-\alpha_1-\alpha_2\rangle. In this case the \alpha_2-string is \begin{equation*} |\Lambda-\alpha_1-\alpha_2\rangle , |\Lambda-\alpha_1-2\alpha_2\rangle, |\Lambda-\alpha_1-3\alpha_2\rangle \end{equation*} thus p=2 and q=0, hence |n_{-\alpha_2,\Lambda - \alpha_1 - \alpha_2}|^2 = 2. I choose the phase of | \Lambda - \alpha_1 - 2 \alpha_2 \rangle such that \begin{equation*} E_{-\alpha_2}|\Lambda-\alpha_1 - \alpha_2\rangle = \sqrt{2} |\Lambda-\alpha_1-2 \alpha_2\rangle \end{equation*} The rest of the calculation of E_{-\alpha_2} proceeds in the same way. Luckily, I encounter each weight only once, so I can always choose the positive square root in formula \eqref{eq:20160919}.
Calculation of E_{-\alpha}
If \alpha < 0 and \alpha is not simple, I can calculate E_{-\alpha} from the commutators. For example, because [ e_{-\alpha_1}, e_{-\alpha_2} ] = - e_{-\alpha_1-\alpha_2} I know that E_{-\alpha_1-\alpha_2} = -[ E_{-\alpha_1}, E_{-\alpha_2} ]. For the positive roots I use E_{-\alpha}^{\dagger} = E_{\alpha}.
Result
Here is the list of the explicit matrices \begin{align*} H_{\alpha_1}&= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)& H_{\alpha_2}&= \left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ \end{array} \right)\\[3mm] E_{-\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{array} \right)& E_{-\alpha_1} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ E_{-\alpha_1-\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ \end{array} \right)& E_{-\alpha_1-2\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \\ \end{array} \right)\\[3mm] E_{-\alpha_1-3\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ \end{array} \right)& E_{-2\alpha_1-3\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\[3mm] E_{\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)& E_{\alpha_1} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\[3mm] E_{\alpha_1+\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)& E_{\alpha_1+2\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\sqrt{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\[3mm] E_{\alpha_1+3\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)& E_{2\alpha_1+3\alpha_2} &= \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \end{align*} It can be checked that these matrices satisfy the commutation relations of G_2.
References
[1] Jones, Groups, Representations and Physics, page 196
[2] Cahn, Semi-Simple Lie Algebras and Their Representations, Chapter X
No comments:
Post a Comment