In this post I prove the Christoffel–Darboux formula without using induction. It seems that often the Christoffel–Darboux formula is proved with induction. However, I find that the proof with induction does not give insight why the Christoffel–Darboux formula is correct. I found the proof below in a paper by Barry Simon.
The Christoffel–Darboux formula is a well-known formula in the theory of orthogonal polynomials. If \( p_k(x) \) with \(k = 0,1, \ldots \) is a set of orthogonal polynomials, normalized such that
\begin{equation*}
\int_{-\infty}^{+\infty}\!\! dx\ w(x)\ p_k(x) p_l(x) = \delta_{kl}
\end{equation*}
then the kernel
\begin{equation*}
K_n(x,y) = \sum_{k=0}^n p_k(x) p_k(y)
\end{equation*}
has the form
\begin{equation}\label{eq:20151111a}
K_n(x,y) = \frac{k_n}{k_{n+1}}\frac{p_{n+1} (x) p_n(y) -p_n(x) p_{n+1} (y)}{x-y}
\end{equation}
with \( k_n \) the leading coefficient of \( p_n (x) \). Formula \eqref{eq:20151111a} is the Christoffel–Darboux formula.
Proof
To make the proof more transparent, I use the bracket notation which is common in quantum mechanics: \( p_n(x) \) is represented by the ket \( | n \rangle \). The convolution with \( K_n \) is by definition
\begin{equation*}
\int_{-\infty}^{+\infty}\!\! dy\ w(y)\ K_n(x,y) f(y) = \sum_{k=0}^n p_k(x) \int_{-\infty}^{+\infty}\!\! dy\ w(y) \ p_k(y) f(y)
\end{equation*}
Thus the operator \( K_n: f \mapsto \int_{-\infty}^{+\infty}\!\! dy\ w(y)\ K_n(x,y) f(y) \) has the form
\begin{equation}\label{eq:20151111b}
K_n = \sum_{k =0}^n | k \rangle \langle k |
\end{equation}
The essential point in the proof is to calculate the commutator \( [ x, K_n ] \)
\begin{align*}
[ x, K_n ] f(x) & = x K_n f(x) - K_n x f(x) \\
& = x \int_{-\infty}^{+\infty}\!\! dy\ w(y)\ K_n(x,y) f(y) - \int_{-\infty}^{+\infty}\!\! dy\ w(y)\ K_n(x,y) y f(y)\\
& = \int_{-\infty}^{+\infty}\!\! dy\ w(y) (x - y) \ K_n(x,y) f(y)
\end{align*}
The Christoffel–Darboux formula is thus equivalent with
\begin{equation}\label{eq:20151111c}
[ x, K_n ] = \frac{k_n}{k_{n+1}} \Big( | n+1 \rangle \langle n | - | n\rangle \langle n +1| \Big)
\end{equation}
Formula \eqref{eq:20151111c} is easily calculated based on \eqref{eq:20151111b}. First expand the multiplication operator \( x \) in the basis \( | k \rangle \)
\begin{equation}\label{eq:20151111d}
x = \sum_{k,l} | k \rangle\ \langle k | x | l \rangle\ \langle l |
\end{equation}
The matrix elements \( \langle k | x | l \rangle \) form the Jacobi matrix; that is why I use the notation \( J_{k,l} = \langle k | x | l \rangle \). Now I calculate
\begin{align*}
[ x, K_n ] &= \sum_{\substack{k,l \\ m \le n}} J_{k,l} \Big[ |k\rangle \langle l| \ ,\ | m \rangle \langle m| \Big] \\
&= \sum_{\substack{k,l \\ m \le n}} J_{k,l} \Big( |k\rangle \langle l| m \rangle \langle m| - | m \rangle \langle m|k\rangle \langle l| \Big)
\end{align*}
using orthonormality gives
\begin{equation*}
[ x, K_n ]
= \sum_{\substack{k \\ l \le n}} J_{k,l} |k\rangle \langle l| - \sum_{\substack{l \\ k \le n}} J_{k,l} |k\rangle \langle l|
\end{equation*}
Now use the fact that the Jacobi matrix \( J_{k,l} \) is tridiagonal, almost all terms cancel, except two. This gives
\begin{equation*}
[ x, K_n ] = J_{n+1,n} |n+1 \rangle \langle n| - J_{n,n+1} |n \rangle \langle n+ 1|
\end{equation*}
The Christoffel–Darboux formula is then proved because it is well-known that
\begin{equation*}
J_{n+1,n} = J_{n,n+1} = \frac{k_n}{k_{n+1}}
\end{equation*}
No comments:
Post a Comment