In Chebyshev's Mémoire, which is a famous paper in the history of number theory, Chebyshev obtains bounds on the function \begin{equation*} \psi(x) = \sum_{p^{\alpha} \le x} \log p \end{equation*} where the sum is over prime powers. Sylvester improved Chebyshev's bounds in his paper On Arithmetical Series by applying two strategies:
- Whereas Chebyshev analyzed the expression \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right) \end{equation*} where \( T(x) = \sum_{ 1 \le n \le x} \log n\ \), Sylvester analyzed more complex expressions, for example \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{6} \right)-T\left( \frac{x}{7} \right)+ T\left( \frac{x}{70} \right)- T\left( \frac{x}{210} \right) \end{equation*}
- Sylvester also applied an iterative method so that he could strengthen bounds he obtained in a recursive manner.
I start with the expression \begin{equation*} V(x) = T(x) - T\left( \frac{x}{2} \right)-2 T\left( \frac{x}{3} \right)+ T\left( \frac{x}{6} \right) \end{equation*} It then follows that \begin{equation*} V(x) = \psi(x) -\psi\left( \frac{x}{3} \right)+ \psi\left( \frac{x}{5} \right)- \psi\left( \frac{x}{6} \right)+ \psi\left( \frac{x}{7} \right)- \psi\left( \frac{x}{9} \right) + \cdots \end{equation*} Because \begin{equation*} V(x) = B x + O(\log x) \end{equation*} with \( B = \frac{1}{6} \log 108 \), one can obtain easily (see here for details) that \begin{equation}\label{20151007startpsi} B x + O(\log^2 x ) \le \psi(x) \le \frac{3}{2} B x + O(\log^2 x ) \end{equation} This is numerically \begin{equation*} 0.780355\ x + O(\log^2 x ) \le \psi(x) \le 1.17053\ x + O(\log^2 x ) \end{equation*} Sylvester's recursive method works as follows. Suppose one has already obtained that \begin{equation*} u x + O(\log^2 x ) \le \psi(x) \le v x + O(\log^2 x ) \end{equation*} then one can improve the lower bound as follows. Write \begin{equation}\label{20151007longupper} \psi(x) = V(x) + \underbrace{\psi\left( \frac{x}{3} \right)- \psi\left( \frac{x}{5} \right)}_{\ge 0}+ \underbrace{\psi\left( \frac{x}{6} \right)- \psi\left( \frac{x}{7} \right)}_{\ge 0}+ \underbrace{\psi\left( \frac{x}{9} \right) - \psi\left( \frac{x}{11} \right)}_{\ge 0} + \cdots \end{equation} I will now keep some of the terms in the right hand side. First, I calculate with the bounds already obtained so far \begin{equation*} \psi\left( \frac{x}{n} \right)-\psi\left( \frac{x}{m} \right) \ge u \frac{x}{n} - v \frac{x}{m} \end{equation*} This is \( \ge 0 \) if and only if \( \frac{m}{n} \ge \frac{v}{u} \). Hence, I will keep the terms \( \psi\left( \frac{x}{n} \right)-\psi\left( \frac{x}{m} \right) \) if and only if \( \frac{m}{n} \ge \frac{v}{u} \). The rationale is that if \( \frac{m}{n} < \frac{v}{u} \), it is better to replace \( \psi\left( \frac{x}{n} \right)-\psi\left( \frac{x}{m} \right) \) with the lower bound \( 0 \) instead of \(u \frac{x}{n} - v \frac{x}{m} \).
At the start of the iteration, I know from \eqref{20151007startpsi} that \begin{equation*} \frac{v}{u} = \frac{3}{2} \end{equation*} Because \( \frac{5}{3} > \frac{3}{2} \), I keep the term \( \psi\left( \frac{x}{3} \right)-\psi\left( \frac{x}{5} \right) \). Because \(\frac{7}{6} < \frac{3}{2} \), I drop the term \( \psi\left( \frac{x}{6} \right)-\psi\left( \frac{x}{7} \right) \) and so on. Thus from \eqref{20151007longupper}, I select \begin{equation*} \psi(x) \ge V(x) + \psi\left( \frac{x}{3} \right)- \psi\left( \frac{x}{5} \right) \ge B x + O(\log x ) + u \frac{x}{3} - v \frac{x}{5} + O(\log^2 x) \end{equation*} Thus I obtain the recursive equation \begin{equation}\label{20151007recu} u_{i+1} = B + \frac{u_i}{3} - \frac{v_i}{5} \end{equation} In a similar way, I can improve the upper bound as follows. First write \begin{equation}\label{20151007longlower} \psi(x) = V(x) + \psi\left( \frac{x}{3} \right)\underbrace{- \psi\left( \frac{x}{5} \right)+\psi\left( \frac{x}{6} \right)}_{\le 0} \underbrace{- \psi\left( \frac{x}{7} \right)+ \psi\left( \frac{x}{9} \right)}_{\le 0} - \cdots \end{equation} Because \( \frac{6}{5} < \frac{3}{2} \), I drop the term \( - \psi\left( \frac{x}{5} \right)+\psi\left( \frac{x}{6} \right) \). For similar reason, all the next pairs are also dropped. Thus \begin{equation*} \psi(x) \le V(x) + \psi\left( \frac{x}{3} \right) \le B x + O(\log x ) + v \frac{x}{3} + O(\log^2 x) \end{equation*} Thus I obtain the recursive equation \begin{equation}\label{20151007recv} v_{i+1} = B + \frac{v_i}{3} \end{equation} The solution of the recursive equations \eqref{20151007recu} and \eqref{20151007recv}, together with the initial conditions \( u_0 = B \) and \( v_0 = \frac{3}{2} B \), is \begin{align*} u_i &= \left( \frac{-1}{20} 3^{-i} + \frac{21}{20} \right) B\\ v_i &= \frac{3}{2} B \end{align*} Taking \( i \) large, one can thus see that for all \( \epsilon > 0 \), \( \psi(x) \) is bounded by \begin{equation}\label{20151007endpsi} \left( \frac{21}{20} B - \epsilon \right) x + O(\log^2 x ) \le \psi(x) \le \frac{3}{2} B x + O(\log^2 x ) \end{equation} The lower bound in \eqref{20151007startpsi} is thus improved; the upper bound not. Numerically, \eqref{20151007endpsi} is the bound \begin{equation*} \left( 0.819373- \epsilon \right) x + O(\log^2 x ) \le \psi(x) \le 1.17053\ x + O(\log^2 x ) \end{equation*} In part II, §2 of his paper, Sylvester gives a very readable account of the application of this recursive method on Chebyshev's choice \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right) \end{equation*} which then leads to the bound \begin{equation*} \left( \frac{51072}{50999} D - \epsilon \right) x + O(\log^2 x ) \le \psi(x) \le \frac{59595}{50999} D x + O(\log^2 x ) \end{equation*} with \( D = \frac{1}{2} \log 2 + \frac{1}{3} \log 3 + \frac{1}{5} \log 5 - \frac{1}{30} \log 30 \). Numerically, this is \begin{equation*} \left( 0.922611- \epsilon \right) x + O(\log^2 x ) \le \psi(x) \le 1.07658\ x + O(\log^2 x ) \end{equation*}
No comments:
Post a Comment