Chebyshev's argument proceeds as follows. Inserting the expression
\begin{equation*} T(x) = \sum_{n=1}^{\infty} \psi\left(\frac{x}{n} \right) \end{equation*} in \eqref{eq:2} gives \begin{align*} &T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right) = \\ & \psi\left(x \right) - \psi\left(\frac{x}{6} \right) + \psi\left(\frac{x}{7} \right)-\psi\left(\frac{x}{10} \right) + \psi\left(\frac{x}{11} \right) - \psi\left(\frac{x}{12} \right)+\psi\left(\frac{x}{13} \right)-\psi\left(\frac{x}{15} \right) \\ & + \psi\left(\frac{x}{17} \right) - \psi\left(\frac{x}{18} \right)+\psi\left(\frac{x}{19} \right) - \psi\left(\frac{x}{20} \right) + \psi\left(\frac{x}{23} \right) -\psi\left(\frac{x}{24} \right) + \psi\left(\frac{x}{29} \right) - \psi\left(\frac{x}{30}\right) + \cdots \end{align*} It is easy to see that the coefficients of \( \psi\left(\frac{x}{n} \right) \) have period 30. Also, one observes that the coefficients have alternating values \(+1 \) and \( - 1 \). The latter property is crucial and leads directly to the inequalities \begin{equation}\label{eq:5} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right)\le \psi(x) \end{equation} and \begin{equation}\label{eq:6} \psi\left(x \right) - \psi\left(\frac{x}{6} \right) \le T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right) \end{equation} Chebyshev uses explicit bounds on \( T(x) \) and inequalities \eqref{eq:5} and \eqref{eq:6} to obtain explicit bounds on \( \psi(x) \). In order to make Chebyshev's argument a bit more transparent, I will use the big \( O \) notation instead. Because \( T(x) = x \log x - x +O\left(\log x \right)\ \), and \( 1 - 1/2 - 1/3 - 1/5 + 1/30 = 0\ \), it follow that \begin{align*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5} \right)+ T\left( \frac{x}{30} \right) =& x \log x - \frac{x}{2} \log\frac{x}{2} - \frac{x}{3} \log\frac{x}{3}-\frac{x}{5} \log\frac{x}{5}+\frac{x}{30} \log\frac{x}{30}\\ &- \left(x - \frac{x}{2} - \frac{x}{3} - \frac{x}{5} + \frac{x}{30} \right)+O\left( \log x \right)\\ =& 0 \cdot \log x + A x +O\left( \log x \right) \end{align*} with \begin{equation*} A = \frac{1}{2} \log 2+\frac{1}{3} \log 3+\frac{1}{5} \log 5 -\frac{1}{30} \log 30 \end{equation*} The inequalities \eqref{eq:5} and \eqref{eq:6} thus become \begin{equation}\label{eq:7} A x + O\left( \log x \right) \le \psi(x) \end{equation} and \begin{equation*} \psi\left(x \right) - \psi\left(\frac{x}{6} \right) \le A x + O\left( \log x \right) \end{equation*} The expression \eqref{eq:7} is thus a lower bound on \(\psi(x) \). To obtain an upper bound, one can proceed as follows \begin{align*} \psi\left(x \right) - \psi\left(\frac{x}{6} \right) \le A x + O\left( \log x \right) \\ \psi\left(\frac{x}{6} \right) - \psi\left(\frac{x}{6^2} \right) \le A \frac{x}{6} + O\left( \log x \right) \\ \psi\left(\frac{x}{6^2} \right) - \psi\left(\frac{x}{6^3} \right) \le A \frac{x}{6^2} + O\left( \log x \right) \end{align*} Adding gives and upper bound on \(\psi(x) \) \begin{align*} \psi(x) &\le A x \frac{1}{1 - 1/6}+O\left( \log^2 x \right)\\ &= \frac{6 A}{5} x + O\left( \log^2 x \right) \end{align*}
Variants
Instead of the expression \eqref{eq:2}, one could try to use other expression of the form \begin{equation*} \sum_{n=1}^{\infty} a_n T\left(\frac{x}{n} \right) \end{equation*} To make Chebyshev's argument work, one needs \begin{equation*} \sum_{n=1}^{\infty} \frac{a_n}{n} = 0 \end{equation*} so that the terms with \( \log x \) cancel and also that \begin{equation*} \sum_{n=1}^{\infty} a_n T\left(\frac{x}{n} \right) \end{equation*} has alternating coefficients when expanded in \( \psi\left(\frac{x}{n} \right) \). If one then obtains \begin{equation*} \sum_{n=1}^{\infty} a_n T\left(\frac{x}{n} \right) = \psi\left(x \right) - \psi\left(\frac{x}{m} \right)+\cdots \end{equation*} then this leads to inequalities \begin{equation*} A x + O\left( \log x \right) \le \psi(x) \le B x + O\left( \log x \right) \end{equation*} with \begin{equation*} A = - \sum \frac{a_n}{n} \log n \ \mbox{ and }\ B = \frac{m+1}{m} A \end{equation*} The only examples I know are the following. I sort them in order of increasing \( A \)
- \begin{equation*} T(x) - 2 T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)+ T\left( \frac{x}{4} \right)+ T\left( \frac{x}{6}\right)- T\left( \frac{x}{12}\right) \end{equation*} which gives \( A = 0.62 \) and \( B = 1.24 \)
- \begin{equation*} T(x) - 2 T\left( \frac{x}{2} \right) \end{equation*} which gives \( A = 0.69 \) and \( B = 1.39 \)
- \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- 2 T\left( \frac{x}{3} \right)+ T\left( \frac{x}{6} \right) \end{equation*} which gives \( A = 0.78 \) and \( B = 1.17 \)
- \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{4}\right) + T\left( \frac{x}{12} \right) \end{equation*} which gives \( A = 0.85 \) and \( B = 1.14 \)
- Chebyshev's choice \begin{equation*} T(x) - T\left( \frac{x}{2} \right)- T\left( \frac{x}{3} \right)- T\left( \frac{x}{5}\right) + T\left( \frac{x}{30} \right) \end{equation*} which gives \( A = 0.92 \) and \( B = 1.11 \)
Other posts about Chebyshev's mémoire
No comments:
Post a Comment