Processing math: 100%

Saturday, July 25, 2015

Neue Empirische Daten Über Die Zahlentheoretische Funktion sigma(n), von Sterneck, 1913. Part II

This post is about a formula that von Sterneck used to calculate values of M(n) for n up to 5,000,000. The formula is
dx M(xd)+dxμ(d)ωP(xd)ωP(x)M(x)=0
where
  • μ the Möbius function
  • M(x)=nxμ(n) the Mertens function
  • ωP(x)={kN|1kx and p1k and  and pjk} with P={p1,pj} a non-empty set of primes
  • kx the sum over integers k with p1k and  and pjk
  • xp1p2 pj
An example
I calculate an example for x=50 and P={2,3}. The first term is
d7 M(50d)=M(50)+M(10)+M(7)
The second term is
d7μ(d)ωP(50d)
If I use
ωP(x)=xx2x3+x6
then it can be calculated that the second term is zero. The third term is ω(7)M(7)=3M(7). All together, von Sterneck's formula gives the recursive relation
M(50)+M(10)+M(7)+03M(7)=0
Because M(10)=1 and M(7)=2 this gives M(50)=3.

Sketch of the proof of the formula
The proof proceeds as follows. Define the function eP
eP(m)={1ifp1m and  and pjm0otherwise
then calculate the Dirichlet convolution 
ePμ=1Pμ where 1P is the characteristic function on the set P={nN|p:p|npP}. Because kxeP(k)=ωP(x), Dirichlet's hyperbola method gives
nx1P(n)μ(n)=dxeP(d) M(xd)+dxμ(d)ωP(xd)ωP(x)M(x)
The result then follows because the left hand side is zero for xp1p2 pj

Von Sterneck used this formula with P={2,3,5,7}. In that way he could calculate values of M(n)  for n up to 5,000,000 based on a pre-computed table of M(n)  for n up to 500,000.

No comments:

Post a Comment