Friday, June 12, 2015

Tauberian Theorem for Cesàro mean

Because the proof of the prime number theorem is related to Tauberian theorems of various kinds (see for example this paper by Mueger), I decided to prove a Tauberian theorem for a very simple case, namely the case of Cesàro means. It seems difficult to find the proof online, I therefore write one down here.



Definition
The Cesàro mean of a sequence \( a_ n \) is defined as the limit
\begin{equation*}
\lim_{n \to \infty} b_n \quad\text{with}\quad b_n = \frac{1}{n} \left( a_1 + \cdots + a_n \right)
\end{equation*}

Abelian Property
If the limit of the sequence \( a_ n \)  exists, then the Cesàro mean also exists, and is equal to this limit:
If \(\displaystyle \lim_{n \to \infty} a_n =a \) exists, then \( \displaystyle\lim_{n \to \infty} \frac{1}{n} \left( a_1 + \cdots + a_n \right) = a \)

The proof is very short if one uses Landau's \( o \) notation: one has
\begin{equation*}b_n - a = \frac{1}{n} \sum_{k = 1}^n \left(a_k - a  \right)
\end{equation*}
Because \( \displaystyle\lim_{k \to \infty} a_k =a \) means \( a_k = a + o(1) \), one has thus
\begin{equation*}
b_n - a = \frac{1}{n} \sum_{k = 1}^n o(1)
\end{equation*}
Because \(  \sum_{k = 1}^n o(1) = o(n) \) and \( \frac{1}{n} o(n) = o(1) \), it follow that \( b_n -a = o(1) \). This means \( \displaystyle\lim_{n \to \infty} b_n =a \) . QED

Tauberian Theorem
Conversily, there is the following Tauberian theorem
If \( \displaystyle\lim_{n \to \infty} \frac{1}{n} \left( a_1 + \cdots + a_n \right) = a \) exists, and \( \Delta a_n = o\left( \frac{1} {n} \right) \) , then \(\displaystyle \lim_{n \to \infty} a_n =a \)
Remark: I use the notation \( \Delta a_n = a_{n + 1} - a_n \)
Proof: Partial summation gives
\begin{equation*}
a_n - b_n = \frac{1}{n} \sum_{k=1}^{n-1} \Delta a_k \cdot k
\end{equation*}
because \( \Delta a_k = o\left( \frac{1} {k} \right) \)  and \(  o\left( \frac{1} {k} \right)    \cdot k = o(1) \) we have
\begin{equation*}
a_n - b_n = \frac{o(n)}{n}  = o(1)
\end{equation*}
This means \( \displaystyle\lim_{n \to \infty} ( a_n - b_n ) = 0 \) thus \( \displaystyle\lim_{n \to \infty} a_n =\displaystyle\lim_{n \to \infty} b_n  = a \). QED
Remark:
  • The condition  \( \Delta a_n = o\left( \frac{1} {n} \right) \) is a Tauberian condition, it can be weakened to \( \Delta a_n = O\left( \frac{1} {n} \right) \)
  • The result can also be translated to a Tauberian theorem about Cesàro summability:

If \( \displaystyle\sum_{n = 0}^{\infty} c_n \) is Cesàro summable to \( s \) and \( c_n = o\left( \frac{1} {n} \right) \) , then \( \displaystyle\sum_{n = 0}^{\infty} c_n =s \)

No comments:

Post a Comment