Friday, April 28, 2017

Bias in Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) simulation can be used to calculate sums \begin{equation}\label{eq:20170427a} I = \sum_a \pi_a f(a) \end{equation} One finds a Markov process $X_t$ with stationary distribution $\pi_a$, then the sum \eqref{eq:20170427a} is approximated by \begin{equation*} S =\frac{1}{N} \sum_{t=1}^N f(X_t) \end{equation*} One can prove that under certain assumptions, \begin{equation*} \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^N f(X_t) = \sum_a \pi_a f(a) \end{equation*} This is Birkhoff's ergodic theorem. In this post I illustrate the behaviour of $ES$ for large $N$.